In Silico Structural Homology Modelling and Docking for Assessment of Pandemic Potential of a Novel H7N9 Influenza Virus and Its Ability to Be Neutralized by Existing Anti-Hemagglutinin Antibodies
نویسندگان
چکیده
The unpredictable nature of pandemic influenza and difficulties in early prediction of pandemic potential of new isolates present a major challenge for health planners. Vaccine manufacturers, in particular, are reluctant to commit resources to development of a new vaccine until after a pandemic is declared. We hypothesized that a structural bioinformatics approach utilising homology-based molecular modelling and docking approaches would assist prediction of pandemic potential of new influenza strains alongside more traditional laboratory and sequence-based methods. The newly emerged Chinese A/Hangzhou/1/2013 (H7N9) influenza virus provided a real-life opportunity to test this hypothesis. We used sequence data and a homology-based approach to construct a 3D-structural model of H7-Hangzhou hemagglutinin (HA) protein. This model was then used to perform docking to human and avian sialic acid receptors to assess respective binding affinities. The model was also used to perform docking simulations with known neutralizing antibodies to assess their ability to neutralize the newly emerged virus. The model predicted H7N9 could bind to human sialic acid receptors thereby indicating pandemic potential. The model also confirmed that existing antibodies against the HA head region are unable to neutralise H7N9 whereas antibodies, e.g. Cr9114, targeting the HA stalk region should bind with high affinity to H7N9. This indicates that existing stalk antibodies initially raised against H5N1 or other influenza A viruses could be therapeutically beneficial in prevention and/or treatment of H7N9 infections. The subsequent publication of the H7N9 HA crystal structure confirmed the accuracy of our in-silico structural model. Antibody docking studies performed using the H7N9 HA crystal structure supported the model's prediction that existing stalk antibodies could cross-neutralise the H7N9 virus. This study demonstrates the value of using in-silico structural modelling approaches to complement physical studies in characterization of new influenza viruses.
منابع مشابه
Expression of HA1 antigen of H5N1 influenza virus as a potent candidate for vaccine in bacterial system
The impending influenza virus pandemic requires global vaccination to prevent large-scale mortality and morbidity, but traditional influenza virus vaccine production is too slow for rapid responses. In this study, bacterial system has been developed for expression and purification of properly folded HA1 antigen as a rapid response to emerging pandemic strains. Here, a recombinant H5N1 (A/Indone...
متن کاملBacillus subtilis as a Host for Recombinant Hemagglutinin Production of the Influenza A (H5N1) Virus
Abstract Background and Aims: Influenza A(H5N1) viruses circulating in animals might evolve and acquire the ability to spread from human to human and thus start a pandemic. Hemagglutinin (HA) has been shown to play a major role in binding of influenza virus to its target cell and the main neutralizing antibody responses elicit against this region. Recent studies have shown that...
متن کاملEntry Properties and Entry Inhibitors of a Human H7N9 Influenza Virus
The recently identified human infections with a novel avian influenza H7N9 virus in China raise important questions regarding possible risk to humans. However, the entry properties and tropism of this H7N9 virus were poorly understood. Moreover, neuraminidase inhibitor resistant H7N9 isolates were recently observed in two patients and correlated with poor clinical outcomes. In this study, we ai...
متن کاملSequence Analysis and Phylogenetic Study of Hemagglutinin Gene of H9N2 Subtype of Avian Influenza Virus Isolated during 1998-2002 in Iran
Sequence analysis and phylogenetic study of hemagglutinin (HA) gene of H9N2 subtype of avian influenza virus isolates (outbreaks of 1998-2002) in Tehran province (Iran) were studied. Two sets of forward and reverse primers in highly conserved regions, based on sequences of HA gene in Genbank, were designed. PCR products of a 430-bp fragment of 16 isolates were sequenced and then were aligned wi...
متن کاملIsolation and Characterization of Novel Phage Displayed scFv Fragment for Human Tumor Necrosis Factor Alpha and Molecular Docking Analysis of Their Interactions
Tumor necrosis factor alpha (TNF-α) expression amplifies to excess amounts in several disorders such as rheumatoid arthritis and psoriasis. Although, Anti-TNF biologics have revolutionized the treatment of these autoimmune diseases, formation of anti-drug antibodies (ADA) has dramatically affected their use. The next generation antibodies (e.g. Fab, scFv) have not only reduced resulted immunoge...
متن کامل